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for development of microbial growth models under dynamic temperature
conditions do not take into account the organism's history. Such models have been shown to be inadequate
in predicting growth of the organisms under dynamic conditions commonly encountered in the food
industry. The objective of the current research was to develop a predictive model for Clostridium perfringens
spore germination and outgrowth in cooked chicken products during cooling by incorporating a function to
describe the prior history of the microbial cell in the secondary model. Incorporating an assumption that
growth kinetics depends in an explicit way on the cells' history could provide accurate estimates of growth or
inactivation.
Cooked, ground uncured chicken was inoculated with C. perfringens spores, and from this chicken, samples
were formed and vacuum packaged. For the isothermal experiments, all samples were incubated in a
constant temperature water baths stabilized at selected temperatures between 10 and 51 °C and sampled
periodically. The samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C at different time
periods (cooling rates) for dynamic cooling experiments. The standard model provided predictions that
varied from the observed mean log10 growth values by magnitudes up to about 0.65 log10. However, for a
selected memory model, estimates of log10 relative growth provided predictions within 0.3 log10 of the mean
observed log10 growth values. These findings point to an improvement of predictions obtained by memory
models over those obtained by the standard model. More study though is needed to validate the selected
model.
Industrial relevance: Mention of trade names or commercial products in this publication is solely for the
purpose of providing specific information and does not imply recommendation or endorsement by the U.S.
Department of Agriculture.

Published by Elsevier Ltd.
1. Introduction
Clostridium perfringens is an anaerobic spore forming bacterium
that is widely distributed in the environment (soil, dust, water and
food) as well as the gastrointestinal tract of humans and animals. This
wide distribution of the spores has been considered as the main
contributing factor for foodborne illness due to C. perfringens
(McClane, 2001). While the spores can survive for several years in
the environment, once germinated, the vegetative cells can replicate
rapidly with typical generation times of 7 to 8 min (Labbe & Huang,
1995; Willardsen, Busta, Allen, & Smith, 1978; Willardsen, Busta, &
Allen, 1979) at its optimal growth temperature (43–44 °C; Labbe &
Juneja, 2006).
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C. perfringens is the third most commonly reported bacterial agent
of foodborne illness in the United States (Olsen et al., 2000). The
organism causes an estimated 250,000 cases of food poisoning
annually, leading to about 41 hospitalizations and seven deaths per
year in the U.S. (Mead et al., 1999). A majority of the foods implicated
in C. perfringens foodborne illness were meat and poultry products
(Olsen et al., 2000). Improper cooling after cooking and temperature
abuse of cooked foods containing meat has been the contributing
factor in most of the outbreaks due to C. perfringens. The spores of this
organism are significantly heat tolerant and can survive the cooking
processes applied tomost of the processedmeats andmeat containing
foods. The heat treatment can further contribute to the spore
germination, resulting in a rapid growth of the organism during
improper cooling or temperature abuse during subsequent handling.

The U.S. Food and Drug Administration recommends chilling
cooked, potentially hazardous foods from 57 °C to 21 °C within 2 h and
subsequently to 5 °C within an additional 4 h (Food Code, 2005) to
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Table 1
Growth kinetics estimates for each isothermal growth curve, for Baranyi and linear
models

EGR LAG ln (EGR×LAG)

Temp °C Replicate Baranyi Linear Baranyi Linear Baryani Linear

13 1 0.04 0.03 198.78 162.44 2.08 1.58
13 2 0.01 0.01 33.43 31.98 −0.74 −0.79
16 1 0.09 0.09 11.75 10.94 0.07 −0.04
16 2 0.09 0.09 12.46 11.76 0.13 0.04
20 1 0.16 0.29 7.33 14.94 0.15 1.45
20 2 0.32 0.31 17.61 17.41 1.72 1.69
23 1 0.65 0.63 11.29 11.20 1.99 1.96
23 2 0.54 0.50 11.11 10.55 1.80 1.66
25 1 0.48 0.48 4.12 4.11 0.69 0.67
25 2 0.43 0.42 4.07 3.98 0.56 0.51
28 1 0.96 0.95 3.26 3.24 1.14 1.13
28 2 0.91 0.87 2.75 2.60 0.92 0.82
31 1 1.06 1.06 2.30 2.30 0.89 0.89
31 2 0.92 0.92 1.54 1.53 0.35 0.35
33 1 0.83 0.82 0.59 0.55 −0.72 −0.80
33 2 1.35 1.33 1.93 1.90 0.95 0.93
35 1 1.39 1.39 1.26 1.29 0.56 0.59
35 2 1.29 1.29 1.56 1.57 0.70 0.71
37 1 1.78 1.83 1.07 1.18 0.64 0.77
37 2 1.81 1.77 1.97 1.93 1.27 1.23
40 1 2.70 2.54 1.45 1.39 1.37 1.26
40 2 1.70 1.67 0.87 0.82 0.39 0.31
43 1 1.95 1.92 0.92 0.89 0.59 0.54
43 2 2.39 2.31 1.12 1.07 0.98 0.90
46 1 2.13 2.18 0.50 0.54 0.07 0.17
46 2 1.96 1.94 0.38 0.37 −0.29 −0.34
48 1 1.76 1.82 0.24 0.30 −0.85 −0.61
48 2 2.15 2.18 0.46 0.49 −0.00 0.06
50 1 1.44 1.52 0.50 0.58 −0.33 −0.12
50 2 1.49 1.42 0.71 0.62 0.05 −0.12
51 1 1.01 0.89 1.19 1.00 0.18 −0.11
51 2 0.67 0.73 0.00 0.00
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reduce the risk of foodborne illness from spore forming pathogens.
Similarly, the USDA Food Safety and Inspection Service (FSIS)
compliance guidelines recommend chilling of cooked meat and
poultry products from 54.4 to 26.7 °C within 1.5 h and subsequently
to 4.4 °Cwithin an additional 5 h (USDA, 2001). Further, the USDA-FSIS
stabilization performance standards require that ready-to-eat meat
and poultry processors chill the cooked meat and poultry products to
control C. perfringens spore germination and outgrowth to prevent
more than a 10-fold increase in the levels cfu/g during the cooling
process.

The objective of this research was to develop a predictive model
that could be used to evaluate C. perfringens spore germination and
outgrowth in uncured chicken products when such products were
subjected to changing temperature or temperature abuse conditions.
Our primary objective is to characterize growth through the
exponential phase, before maximum population densities (MPD)
would be reached. This objective is motivated by the regulatory
requirement (USDA, 1999) that restricts the growth of C. perfringens to
lower levels than the maximum population levels, which, in
controlled laboratory studies, can typically be N106 cfu/g.

The general model developed in this paper is similar to the one
developed in Juneja, Marks and Thippareddi (2008) for uncured beef.
The features of the model include terms that capture an assumed
“memory” effect wherein the instantaneous probabilities of changes
in the cells' growth phases (lag or exponential phase) depend not only
on the instantaneous environment (temperature), but also on the
immediately preceding environments. In this paper we consider two
such memory models.

The common methodology toward developing a growth model for
dynamic environments is to first estimate growth kinetic parameters
from a series of growth experiments conducted within specified fixed
environments (in this case, isothermal), and from these, develop
“secondary models” to determine values for the parameters for any
fixed environment within some range. From such models, together
with a judiciously selected set of differential equations that describe
the growth kinetics or growth change over small increments of time, a
general model for predicting relative growth within a changing
environment is derived. The coefficients of the differential equations
represent instantaneous probabilities of events or hazard functions
that dictate the rates of change within cells or the size of a population
of cells, and are assumed not to depend on conditions existing before
that instant; that is, they are independent of past history. However, it
appears from our experiments here and those reported in Juneja et al.
(2008) and others reported in the literature (Amézquita, Weller,
Wang, Thippareddi, & Burson, 2005) that the standard model did not
always provide satisfactory predictions of growth. If history is to be
taken into account using these models, one procedure would be to
assume that the instantaneous rates or hazard functions at a given
time are actually functions of the determined (isothermally) instan-
taneous rates or hazard functions at times equal to or previous to the
given time. One possibility, the approach used in Juneja et al. (2008)
and this paper, is to assume that the instantaneous rates at given times
are weighted averages of the instantaneous rates derived from
isothermal experiments over earlier times. Different formulation of
the weighting lead to different predicted log10 relative growth for
various cooling scenarios. The selected formulation would be the one
that provides the closest predictions to the observed values.

2. Materials and methods

2.1. Test organisms and spore production

Three strains of C. perfringens, NCTC 8238 (Hobbs serotype 2),
NCTC 8239 (Hobbs serotype 3), and NCTC 10240 (Hobbs serotype 13),
were obtained from the Microbial Food Safety Research Unit culture
collection (Wyndmoor, PA). C. perfringens spores were produced in a
modified formulation of the Duncan and Strong sporulation medium,
as described previously (Juneja, Call, & Miller, 1993a). The spore crop
of each strain was washed twice and then resuspended in sterile
distilled water. The suspensions were stored in a refrigerator at 4 °C.
The spore population was heat-shocked for 20 min at 75 °C, serially
diluted in 0.1% sterile peptone water (PW) and spiral plated (Model D,
Spiral Biotech, Bethesda, MD) in duplicate on to tryptose–sulfite–
cycloserine agar followed by incubation of plates anaerobically for
48 h at 35 °C. A spore cocktail was prepared immediately prior to
experimentation by mixing equal numbers of spores of C. perfringens
from each of the three suspensions.

2.2. Preparation and inoculation of sampling times and bacterial
enumeration

Ground chicken was obtained from a local retail store and frozen
(−5 °C) until used (~40 d). The day before the experiment, the ground
chicken was thawed overnight in a refrigerator (~4 °C). Ground
chicken samples (5-g) were then aseptically weighed into sterile, low-
oxygen transmissionWhirl Pak bags (4-oz/120-ml capacity; 3″W×7 1/
4″L; 7.5 cm×18.5 cm; barrier film 0.125 cc oxygen transmission per
100-inch square in 24 h; Part# B01298WA; Nasco, Modesto, CA) and
inoculated with 0.1 ml of the C. perfringens spore cocktail to a final
concentration of ~3.0 log10 spores/g.

The contents of the bags were thoroughly mixed manually to
ensure an even distribution of the spores in the chicken sample.
Negative controls included bags containing chicken samples inocu-
lated with 0.1 ml of PW without the bacterial spores. The bags were
compressed into a thin layer (ca.1 mm, thick) by pressing against a flat
surface, excluding most of the air, and then heat sealed under vacuum
(1000 mbars) using a Multivac vacuum packager (Model A300/16,
Multivac Inc., Kansas City, MO). The vacuum packaged samples were



Fig. 1. a–d. Plots of observed log10 levels (cfu/ml) and fitted Baranyi growth curves (Eq. (1)) for isothermal experiments, for each temperature (given in °C) and each replicate
experiment.
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heat-shocked at 75 °C for 20 min in a water bath; two bags were then
opened, chicken in each bag was serially diluted in PW, and then
surface plated with a Spiral plater (Model D, Spiral Biotech, Bethesda,
MD) on tryptose-sulfite-cycloserine (TSC) agar as described previously
(Juneja and Marmer, 1998).

The total C. perfringens populations were determined after 48 h
incubation at 37 °C in a Bactron anaerobic chamber (Bactron IV,
Sheldon Laboratories, Cornelius, OR). This was recorded as the initial
inoculated number of bacterial spores after heat-shocking, i.e., time 0.
Both non-inoculated rawchicken and heat-shocked chicken (5 g)were
used to verify the absence of C. perfringens in the ground chicken.
Typical black colonies were subjected to further examination using
lactose-gelatin and nitrate-motility medium (Schwab et al., 1984).

Thereafter, for the isothermal experiments, all samples were
incubated in constant temperature water baths stabilized at selected
temperatures between 10 and 51 °C (Table 1). Two independent
experiments/replications were done at each temperature. Two bags
for each replicate were then removed at designated time intervals,
with the sampling frequency based on growth temperature, where the
total number of sampling times was about 6–7 for each temperature.
The samples were analyzed for total C. perfringens populations as
described above. For each experiment, an average cfu/g of four
platings (analysis of two bags) of each sampling point were recorded
and used to determine estimates of the growth kinetics.

For the dynamic cooling experiments, the water bath was
programmed so that the temperature decreased linearly with time,
between 54.4 °C and 27 °C for a specified duration, and from 27 °C to
4 °C for another specified duration. The samples were stabilized at
54.4 °C or 27 °C, as the case may be, for 10 min before initializing
program. Thus, for modeling changing temperatures, it was assumed
that the derivative of temperature, dT(t)/dt=−k for some value of k.

2.3. Statistical methods

Procedures for determining a growth model follow those pre-
sented in Juneja et al. (2008). Below is a summary of the procedures
used.

2.3.1. Primary growth model
A Baranyi function (Baranyi and Roberts, 1994) used to estimate

growth at time t was:

n tð Þ = n 0ð Þ + μA tð Þ− ln 1 +
eμA tð Þ−1
e m−n 0ð Þð Þ

� �
+ ɛ tð Þ ð1Þ

where

A tð Þ = t + μ−1 ln
e−ut + q
1 + q

� �
ð2Þ

n(t) is the natural log of the observed level of C. perfringens at time t,
ε(t) is an error term for measurements at time t, and μ, q, and m are
parameters that determine or affect the exponential growth rate, the
lag phase, and the curvature of the growth curve when the population
of cells approaches stationary phase. The parameter m is the natural
log of the maximum population density, MPD. The equations for



Fig. 2. Estimated exponential growth rates, EGR for Baranyi model, and fitted
Ratkowsky model for EGR, versus temperature (Eq. (6)). Solid line is fitted curve
when using all data (indicated by ALL); dotted line is fitted curve when deleting EGR
value=2.7 sat 40 °C. The model used in the paper was derived using all the data.

Fig. 3. Estimated values of ξ=ln(EGR×LAG) (y-axis) versus temperature (°C) for the
Baranyi model, where solid line is the estimated quadratic regressionwith independent
variable equal to temperature, derived using all the data.
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exponential growth rate in log-base 10 units (EGR) and the population
lag phase duration parameter (LAG) are:

EGR = μ= ln 10ð Þ
LAG = μ−1 ln 1 + q−1

� �
:

ð3Þ

The product of EGR and LAG is a function of one parameter, q. In
Baranyi and Roberts (1994) this parameter reflects the initial
“physiological state” of the cells and is often assumed to be constant
when samples for the experiments are prepared in a controlled or
standard fashion.

A linearized version of the above model is also considered because
of the high variability of the estimated maximum population density.
Using graphs of the fitted Baryani curves and the observed log levels,
data points that appear to represent stationary or near stationary
phases of the growth cycle were deleted. A two-compartment, growth
model that assumes cells are either in the lag phase or the exponential
phase of growthwas estimated using the non-deleted data points. The
function for this model (Baranyi and Pin, 2001) is:

n tð Þ = ln μe−λt + λeμt
� �

− ln μ + λð Þ ð4Þ

where μ and λ are parameters that determine EGR and LAG, from

EGR = μ= ln 10ð Þ
LAG = μ−1 ln 1 + μ=λð Þ

ð5Þ

The product of EGR and LAG is a function of one parameter, q=λ/μ,
which has the same interpretation as given above for the Baryani
growth curve.

2.3.2. Secondary model
The estimated values of the parameters, as a function of

temperature, T, were used to estimate secondary models for EGR
and LAG. For the EGR, a Ratkowsky (McMeekin, Olley, Ross,
Ratkowsky, 1993) equation:

EGR1=2 = a T−Tminð Þ 1− exp b T−Tmaxð Þð Þ½ �1=2 ð6Þ

was used, where Tmin and Tmax are the minimum and maximum
temperatures for which within this range of temperature there are
non-zero EGR values, and a and b are parameters. To determine the
LAG, for a given value of EGR, the natural log of the product, ζ=ln
(EGR×LAG) is considered. The variable ζwas assumed to be a function
of temperature; parameter values of the function were estimated by
statistical analysis. For estimating parameter values of Eq. (6) and ζ, a
mixed effect model, assuming a nested variance structure, was used to
determine the statistical significance of a non-zero between-replicate,
within-temperature, variance component.

To determine predicted growth for changing temperature, the
following differential equations (Juneja et al., 2003b, 2008) are used:

dm0 tð Þ
dt

= −h tð Þm0 tð Þ
dmD tð Þ

dt
= h tð Þm0 tð Þ + μ tð ÞmD tð Þ 1−

m0 tð Þ +mD tð Þ
M

� � ð7Þ

where h(t) is the hazard function for cells in the lag phase (=λ when
constant), μ (t) is the exponential growth rate expressed in natural log
terms,mO(t) is the level of cells in the lag phase, andmD(t) is the level
of cells in the exponential phase, and M is the maximum population
density. The effect of the “logistic” term on the right of the second
equation above is miniscule on the growth during the lag and the
initial exponential phases of growth. The dynamic parameters h(t)
and μ (t) are computed from the secondary model Eq. (5), where
temperature T (t) is a known function of time.

In Juneja et al. (2008) a model was developed that assumed an effect
of previous temperatures on the hazard functions that would carry
forward in some fashion. These were called memory-of-Δ models, in
which integrated hazards, h̃(t) and μ̃(t) where h̃ tð Þ = ∫wh sð Þh sð Þds and
μ tð Þ = ∫wu sð Þh sð Þds, and wh and wμ are functions, defined below. These
are, respectively, substituted for h(t) and µ(t) in Eq. (7). For the lag times,
it was assumed a weighting function, wh(s)=6(s−t)(t−Δ−s)/Δ3, for s in
the interval I=[max(0, t−Δ), t], zero elsewhere. The integral of this
weighting function is 1, and the function is symmetric in the interval [t
−Δ, t] when tNΔ. Thus using instead of h(t) “shifts” the hazard function
by about Δ/2. For the exponential growth rate hazard function, μ(t), the
usual assumption is that μ is unaffected by previous environments;
however, we can image that there is some “carry-over” effect, though
perhaps not as great as the effect incurred for the lag times. Thus, instead
of aweighting function,wh(s), for μ̃(t), theweighting function,wμ(s), was
defined such that it is at its maximum at t. Aweighting functionwμ(s)=3
(t−Δ−s)2/Δ3 satisfies this property. In some of the memory models, Δ
was not assumed constant but rather was assumed to be a decreasing
function of the exponential growth rate. This property is assumed based
on the notion that the carry over effect assumed for these memory
modelswoulddependupon the speedof the cell'smetabolicmechanisms
regarding processing nutrients and preparing itself for eventual cell



Table 2
Estimates of values for secondary model parameters for exponential growth rate, EGR
and ζ= ln(EGR×LAG)

Model Growth temp °C a b c d e

Max Min

Baranyi 52.14 9.61 0.047 0.217 −0.39 0.10 −0.0019
Linear 52.07 9.68 0.047 0.228 −0.41 0.10 −0.0019

The models are: EGR1/2=a(T−Tmin)[1−exp(b(T−Tmax))]1/2, ζ=c+dT+eT2 where T is
temperature °C.
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division: themore rapid this processing the less memory carry-over, and
thus smaller value of Δ. The value of EGR provides a measure which is
assumed to have a positive correlation with the cell's metabolic
processing rates. Two functions are considered: F1(μ)=1−μ(t)/8, and F2
(μ)=1−μ(t)1/2/8.

To determine the variance error matrix of the estimated para-
meters of these secondary equations and of estimates of log10 relative
growth from these equations, bootstrap estimationwas used. For each
temperature, there were 2 growth experiments. These are assumed to
be random selections from a population of all such experimental
growth experiments at that temperature. For each bootstrap, from the
two experiments at each temperature, two randomly selected
experiments with replacement were made, and from these the
estimates of the parameter values defining the secondary equations
were made. The variance error matrix and confidence intervals were
estimated from 2500 bootstraps. That is, the standard deviation of the
2500 generated values of a parameter is the standard error of the
estimated parameter value, and the complete error variance matrix is
determined from the covariance matrix of the bootstrapped para-
meter values over the 2500 bootstrap realizations.

Estimates of parameter values of equations were made using
linear, non-linear, and mixed effect regression procedures of the SAS
software system (SAS, 2004), using default options (there was no
need to adjust any of options). Graphs were constructed using S-
PLUS®. Statistical comparisons between models (goodness of fit)
were made by likelihood ratio tests based on differences of L=−2
log-likelihood values, which is provided as an output of the SAS
procedure. The significance of the difference between two values of L
was approximated as a chi-square distribution with degrees of
freedom equal to the difference in the number of parameters used in
fitting the model (assuming one model is directly obtainable from
the other model by eliminating a subset of parameters or assuming
fixed values for them).
Table 3
Mean values and estimated standard errors and correlations of parameter values for the ex

Variable Temp a b ln f

Max Min

Mean 52.09 9.56 0.0471 0.234 −1.634
SD 0.20 0.51 0.0020 0.045 0.348
Temp max 1.00 0.46 0.6190 −0.862 −0.385
Temp min 0.46 1.00 0.8835 −0.690 −0.348
a 0.62 0.88 1.0000 −0.857 −0.579
b −0.86 −0.69 − .8573 1.000 0.615
ln(f) −0.38 −0.35 − .5792 0.615 1.000
ln(−ρ) −0.26 −0.22 − .4217 0.465 0.908
c −0.14 −0.80 − .6642 0.333 0.013
d 0.18 0.79 0.7216 −0.407 −0.108
e −0.21 −0.78 − .7472 0.458 0.168
ln(h) −0.42 −0.20 − .4386 0.602 0.678
ln(−φ) −0.34 −0.11 − .2644 0.472 0.503

The estimated standard error for a parameter value is equal to the standard deviation of the
residual standard deviations of ln(EGR0.5): σr= feρ(T− Tmin), and for ζ: σr=heφT as a function of t
f were used because the distributions of these transformed variables were more symmetric
3. Results

3.1. Preliminary examination of the raw data

One data point, at 46 °C, replicate 1, and 5.0 min, was deleted, since
the estimated log10 level of 9.48 was 1.18 log10 greater than the next
highest value of 8.30 (which was at a different temperature) and 1.30
log10 greater than its replicate. Further, 2 data points at 51 °C, replicate
2, one at 4 min and one at 5 min, were deleted because their log10
measured values were 1.0 and 1.3, respectively, nearly 2 log10 less than
the surrounding values, and both had residuals exceeding 2.5 log10 in
the initial regression analysis. At 10 °C there was no observed growth.

3.2. Primary growth model

Fig. 1a–d provides graphs of the fitted Baranyi growth curves of Eq.
(1) and a plot of all data (including those data that were deleted from
the analysis) for each temperature from 13 °C to 51 °C. Table 1 provides
estimates of EGR and LAG for both the Baryani model (Eq. (3)) and the
linear model (Eq. (4)) obtained by eliminating data points that were
judged to be in the stationary or near stationary phase, for each
growth experiment excluding the ones at 10 °C. Note that the
estimated EGR value at 40 °C for the first replicate appear to be
unexpectedly large, relative to neighboring values.

3.3. Secondary model

3.3.1. EGR
The influence of the data point at 40 °C on the estimated

parameter values of the Ratkowsky equation (Eq. (6)) was minimal;
however, the model-predicted EGR values differed from the
estimated EGR values given in Table 1 by 0.71 for the Baryani
model and 0.57 for the linear model. Consequently, the data point
was deleted from the analysis. Fig. 2 is a plot of the EGR estimated
values for the linear model together with the predicted EGR from the
fitted Ratkowsky equation. The model parameters were estimated
with ln(EGR1/2) as the dependent variable, using nonlinear regres-
sion, and an assumed a heteroscedastic standard deviation for the
residual standard deviation:

σ r = feρ T−Tminð Þ ð8Þ

The estimate of ρ was −0.0322, with a standard error of 0.00954, and
was statistically significant at the 0.002 level. The estimate of f was
0.207, with a standard error of 0.055. The value of σr is approximately
1/2 the CV of EGR. Using this approximation, 20.7% would be an
ponential model given in Table 2, based on 2500 bootstraps

ln −r c d e ln (h) ln
(−φ)

−3.275 −0.035 0.077 − .0016 0.502 −3.354
0.373 0.815 0.048 0.0007 0.331 0.266

−0.264 −0.137 0.176 − .2066 −0.420 −0.342
−0.220 −0.799 0.790 − .7779 −0.201 −0.111
−0.422 −0.664 0.722 − .7472 −0.439 −0.264
0.465 0.333 −0.407 0.4578 0.602 0.472
0.908 0.013 −0.108 0.1676 0.678 0.503
1.000 −0.068 −0.006 0.0572 0.574 0.462

−0.068 1.000 −0.985 0.9609 −0.024 −0.082
−0.006 −0.985 1.000 − .9937 −0.083 0.014
0.057 0.961 −0.994 1.0000 0.164 0.054
0.574 −0.024 −0.083 0.1644 1.000 0.901
0.462 −0.082 0.014 0.0536 0.901 1.000

2500 bootstrapped results for the parameter. Heteroscedastic standard deviation for the
emperature were assumed. The natural logarithms of the temperature coefficient ρ, and
than those of the untransformed variables.



Table 4
Predictions of, and observed, log10 increase for dynamic growth curves with constant
rate (linear) decline in temperature between the designated temperatures

Time (h) between Mean
initial
log10
level

Predicted log10 increase Observed log10
increase

Difference
(observed-
linear)54.4

and
27 °C

27
and
4 °C

Baranyi Linear Std.
dev.Models

1.5 0.0 2.81 1.14 1.15 0.47 0.05 −0.68
1.5 12.5 2.27 3.24 3.22 2.39 0.06 −0.83
1.5 15.0 2.38 3.66 3.64 3.54 0.25 −0.09
3.0 0.0 2.28 3.32 3.33 2.73 0.39 −0.60
3.0 7.5 2.49 4.55 4.54 4.13 0.25 −0.42
3.0 10.0 2.96 4.74 4.73 2.67 0.13 −2.06
3.0 12.5 2.49 5.16 5.15 3.79 0.91 −1.36
4.5 0.0 2.33 5.26 5.27 4.73 0.25 −0.54

Each observed value is the average of observed results (log10) from two growth
experiments.

Table 6
Predictions, using memory — Δ h — models for exponential model, with Δ=0, 0.25 h
and 0.5 h, of log10 relative growth for selected cooling scenarios with temperatures
declining at a constant rate between the given endpoint temperatures

Hours from Mean
observed

Predicted log10 relative growth for linear
model

54.4 to 27 °C 27 to 4 °C Δ=0 h Δ=0.25 h Δ=0.5 h F1 F2

1.5 –a 0.47 1.15 1.01 0.87 0.98 0.76
1.5 12.5 2.39 3.22 3.12 3.02 3.24 3.00
1.5 15.0 3.54 3.64 3.53 3.43 3.65 3.41
3.0 –a 2.73 3.33 3.21 3.07 3.11 2.96
1.5 5.0 – 1.97 1.87 1.76 1.98 1.75

In addition, two functions of EGR for Δ are considered: F1=1− (EGR)ln(10) /8, and
F2=1− [EGRln(10)]1/2 /8.

a Experiment stopped at 27 °C.
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estimate of 1/2 the CV of EGR at or near the minimum temperature; as
the temperature increases, the CV decreases; near the maximum
temperature, where 1/2 the CV of EGRwas estimated to be about 5.3%,
with a standard error of about 1.1%.

3.3.2. LAG
Fig. 3 is a plot of the estimates of ξ=ln(EGR×LAG) for the

exponential model versus temperature, together with a linear
regression line. The assumption of assuming that ξ is constant is not
supported by the plots. In addition the residual standard deviations
appear to be homoscedastic. Linear regression was performed
assuming that ξ is a quadratic in temperature and that the residual
standard deviations can be described as:

σ r = heuT ð9Þ

where h and φ are constants. Thus there are 5 parameters in this
model; the between replicate, within temperature, variance compo-
nent was not significant.

3.3.3. Summary of secondary model
Table 2 presents the estimates of the values of the parameters, a, b,

Tmax and Tmin, identified in Eq. (6) for determining EGR and the
coefficients, c, d, e, in the quadratic equation in temperature, for
determining ζ. Using the parameter values of Table 2, predictions of
log10 relative growth can be obtained for any temperature. Table 3
provides the mean values of the 2500 bootstrap estimates of the
parameter values for the linear model, their standard deviations
(which are the estimates of the standard errors of the estimated
parameter values), and the correlations among the estimated
variables. The distributions of the bootstrap realizations for the
estimated values of the parameters were nearly normal, with the
exception of the parameters f, ρ, h and φ of Eqs. (8) and (9). For these
Table 5
Standard errors of estimated selected log10 relative growths from the linear model,
based on 2500 bootstraps

Time
between
54.4 and
27

Time
between
27 and 4

Average
observed log10
relative growth

Std.
dev.

Mean log10
relative growth
linear model

Std. error log10
relative growth
linear model

1.5 0.0 0.47 0.05 1.15 0.065
1.5 12.5 2.39 0.06 3.25 0.124
1.5 15.0 3.54 0.25 3.67 0.137
3.0 0.0 2.73 0.39 3.33 0.110
3.0 7.5 4.13 0.25 4.55 0.122
3.0 10.0 2.67 0.13 4.73 0.077
3.0 12.5 3.79 0.91 5.15 0.087
4.5 0.0 4.73 0.25 5.25 0.096
parameters, a natural log transformation was used: e.g., ln(f) and ln
(−ρ), which provided more normal distributions. The standard error
estimates obtained from the bootstrap were either nearly equal the
ones obtained from the regression analyses, or slightly larger. For
example, for Tmax the mean value of the bootstrap iterations was
52.087, with a standard deviation of 0.200, versus 52.071 obtained
from the regression, with a standard error of 0.184. From the bootstrap
estimates, the lower 99% confidence bound of Tmin was 8.42 °C, and
the upper 99% confidence bound was 10.60 °C; for Tmax, the lower 99%
confidence bound was 51.69 °C, and the upper 99% confidence bound
was 52.56 °C. These are quite near the estimates obtained, using the
regression results and normal approximation, of 51.62 °C and 52.52 °C,
based on 31 degrees of freedom.

3.4. Predictions for dynamic cooling scenarios

Growth experiments were performed where temperatures chan-
ged linearly from 54.4 °C to 27 °C at one rate, and then at another rate,
from 27 °C to 4 °C. Experiments thus are labeled as (h1, h2) where h1 is
the hours for cooling from 54.4 °C to 27 °C, and h2, from 27 °C to 4 °C.
Table 4 gives predicted and observed log10 relative increases of levels
for the Baryani and linear models for various cooling scenarios
studied. The differences among the estimates of relative growth for
the two models were quite insignificant. Generally, while the
populations of cells were in the exponential phase of growth, the
model-predicted relative growths were larger than the observed
relative growths. Standard errors of the linear model estimated log10
relative growth are given in Table 5 for the exponential and logistic
models, based on the bootstrap of 2500 iterations.

To see the effect of incorporating a memory, calculations of log10
relative growth are given for fixed values of Δ, and for when Δ is a
function of the EGR. Table 6 gives predicted log10 relative growth for
selected scenarios for the exponential model with Δ=0.25 h and 0.5 h,
and for two functions: F1(Δ)=1− [EGR(t)ln(10)] /8, and F2(Δ)=1
− [EGR(t)ln(10)]1/2 /8. When Δ is constant, the predictions are lower
than the corresponding predictions for the no-memory (Δ=0 h)
model. When the function was equal to F2, differences of the
predictions of observed log10 relative growths from the observed
values were less than 0.3 log10 in magnitude, and seemed to provide
the best predictions among the models considered for the scenarios
studied. For the Food Safety and Inspection Service (FSIS) compliance
guidelines cooling scenario, (1.5, 5), the estimate obtained assuming
Δ=0 was 1.97 log10 relative growth, while using memory model
with F2 the estimate was 1.76. These estimates exceed the present
USDA (1999) requirement of no more than 1 log10 relative growth.

4. Conclusion

For this study, the growth of C. perfringens in uncured chicken was
explored. The values of growth model parameters were derived using
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the usual approach: first developing primary growth equations in
isothermal environments, then developing secondary equations
derived from estimated primary growth parameter values. Using the
parameter values for the secondary equations, and a set of differential
equations that describe the instantaneous behavior of growth kinetic
parameters, relative growth of C. perfringens can be estimated for any
cooling scenario. The secondary equations were based on a Ratkowsky
curve for determining the exponential growth rate, EGR, as a function
of temperature. To estimate the lag phase duration, an assumption
often made is that the products of the population lag phase and EGR
are the same, independent of temperature, reflecting the physiological
conditions of the cells. However, these data were not consistent with
this assumption; rather, for the models of this paper, it was assumed
that the logarithmic transformation of the product was a quadratic
polynomial in temperature.

The estimated range of temperatures for growthwas about 52 °C to
9.7 °C. For a temperature decline, linearly, from 54.4 °C to 27 °C in 1.5 h,
the standard model predicted a log10 relative growth of about 1.15,
while the mean of the observed log10 relative growth results for two
replicates was 0.47 log10; for the same temperature decline in 3 h, the
predicted log10 relative growth was about 3.33 log10 and the mean
observed log10 relative growth was 2.73 log10. For a cooling scenario
that extends to 4 °C, of 54.4 °C to 27 °C, linearly, in 1.5 h and 27 °C to
4 °C, linearly, in 12.5 h, the average observed and predicted log10
relative growths were 2.73 log10 and 3.22 log10, respectively; when
cooling was extended from 27 °C to 4 °C, linearly, in 15 h, the average
observed and predicted log10 relative growths were 3.62 log10 and
3.64 log10, respectively. For the latter cooling scenario the levels were
greater than 6 log10, still less than stationary levels of about 7 or 8
log10.

The standard model for predicting growth in dynamic cooling
scenarios is based on the appropriateness of translating, directly,
results obtained for isothermal environments into differential equa-
tions with coefficients that assumed to be representing rates of
instantaneous changes of cell states (hazard functions), dependent
only on time, with no-memory. This assumption is certainly not
innocuous; it assumes the past experience of cells would not have an
impact on the cells' processing mechanisms so as to not affect their
specific rates of growths at any time. To introduce memory, the
standard model was adjusted by incorporating another parameter, Δ,
where it is assumed that the hazard functions of a cell leaving the lag
phase and entering the exponential phase of growth, or of a cell
dividing once in the exponential phase of growth, depend on
environments (temperatures) occurring earlier, from t−Δ to t.
Specifically, hazards functions that are used in the differential
equations that reflect the growth dynamics were assumed to be
weighted integrals, from t−Δ to t, of the isothermal derived hazard
functions that are used in the standard model. In addition, the length
of memory, Δ, was assumed to be a decreasing function of the
exponential growth rate. When the function was equal to 1− [EGRln
(10)]1/2 /8, differences of the predictions of observed log10 relative
growths and the observed values were not more than 0.3 log10 in
absolute value.

More research to validate the above types of model adjustments is
needed. However, the information in this paper presents a model
which can be used to design cooling processes to help ensure the
safety of ready-to-eat chicken products.
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